Evaluation of Boron's Adjuvant Activity in Inactive Bacterin Vaccines Using the Mice Model

使用小鼠模型评估硼在灭活疫苗中的佐剂活性

阅读:5
作者:Zafer Sayın, Ali Uslu, Osman Erganiş, Abdullah Başoglu, Özgür Özdemir, Aslı Sakmanoğlu, Uçkun Sait Uçan, Zeki Aras

Abstract

Vaccination is the most effective, reliable, and economical way of preventing or reducing the effect of infectious diseases. When preparing inactive vaccines, a range of additives called adjuvants are necessary to enhance the magnitude of the immune response. Boron has a wide range of industrial and medical applications, and its positive effects on distinct functions have been described in plants, humans, and animals. However, no studies exist about the possible adjuvant activities of boron compounds in vaccines. Hence, in this study, the potential adjuvant effect of boric acid was explored and compared with common veterinary adjuvants in a mice model. Staphylococcus aureus (S. aureus) used as vaccine antigen was isolated from dairy cows with bovine mastitis. Vaccines adjuvanted with boric acid, aluminum hydroxide, Montanide ISA 50 and ISA 206, and Montanide + boric acid combinations were prepared. The efficacy of vaccines was evaluated according to local reactions at the injection site, C-reactive protein, total Ig G, total Ig M, and anti-S. aureus antibody levels in mice. Boric acid reduced local inflammatory reactions induced by the Montanide adjuvants. Moreover, mice vaccinated with boric acid-adjuvanted vaccine had higher levels of anti-S. aureus antibody than those in the controls (P < 0.05) and were similar to the levels found in mice sensitized with aluminum hydroxide. Total Ig G and Ig M results were, however, unsuitable for the assessment of adjuvant activity for this study. In conclusion, this study revealed that boric acid has an adjuvant potential in inactive bacterin vaccines, but further target animal studies are needed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。