Cell of origin determines tumor phenotype in an oncogenic Ras/p53 knockout transgenic model of high-grade glioma

在致癌 Ras/p53 敲除高级别胶质瘤转基因模型中,起源细胞决定肿瘤表型

阅读:8
作者:Sabah O Ghazi, Michelle Stark, Zhiguo Zhao, Bret C Mobley, Alex Munden, Laura Hover, Ty William Abel

Abstract

Human high-grade gliomas (HGGs) are known for their histologic diversity. To address the role of cell of origin in glioma phenotype, transgenic mice were generated in which oncogenic Ras and p53 deletion were targeted to neural stem/progenitor cells (NSPCs) and mature astrocytes. The hGFAP-Cre/Kras/p53 mice develop multifocal HGGs that vary histopathologically and with respect to the expression of markers associated with NSPCs. One HGG pattern strongly expressed markers of NSPCs and arose near the subventricular zone. Additional nonoverlapping patterns that recapitulate human HGG variants were present simultaneously in the same brain. These neoplastic foci were more often cortical or leptomeningeal based, and the neoplastic cells lacked expression of NSPC markers. To determine whether cell of origin determines tumor phenotype, astrocytes and NSPCs were harvested from neonatal mutant pups. Onorthotopic transplantation, early-passage astrocytes and NSPCs formed tumors that differed in engraftment rates, latency to clinical signs, histopathology, and protein expression. Astrocyte-derivedtumors were more aggressive, had giant-cell histology, and glial fibrillary acidic protein expression. The NSPC-derived tumors retained NSPC markers and showed evidence of differentiation along astrocytic, oligodendroglial, and neuronal lineages. These results indicate that identical tumorigenic stimuli produce markedly different glioma phenotypes, depending on the differentiation status of the transformed cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。