Scarless Genome Editing of Human Pluripotent Stem Cells via Transient Puromycin Selection

通过瞬时嘌呤霉素选择对人类多能干细胞进行无瘢痕基因组编辑

阅读:5
作者:Benjamin Steyer, Qian Bu, Evan Cory, Keer Jiang, Stella Duong, Divya Sinha, Stephanie Steltzer, David Gamm, Qiang Chang, Krishanu Saha

Abstract

Genome-edited human pluripotent stem cells (hPSCs) have broad applications in disease modeling, drug discovery, and regenerative medicine. We present and characterize a robust method for rapid, scarless introduction or correction of disease-associated variants in hPSCs using CRISPR/Cas9. Utilizing non-integrated plasmid vectors that express a puromycin N-acetyl-transferase (PAC) gene, whose expression and translation is linked to that of Cas9, we transiently select for cells based on their early levels of Cas9 protein. Under optimized conditions, co-delivery with single-stranded donor DNA enabled isolation of clonal cell populations containing both heterozygous and homozygous precise genome edits in as little as 2 weeks without requiring cell sorting or high-throughput sequencing. Edited cells isolated using this method did not contain any detectable off-target mutations and displayed expected functional phenotypes after directed differentiation. We apply the approach to a variety of genomic loci in five hPSC lines cultured using both feeder and feeder-free conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。