Adsorptive removal of anticarcinogen pazopanib from aqueous solutions using activated carbon: isotherm, kinetic and thermodynamic studies

利用活性炭从水溶液中吸附去除抗致癌剂帕唑帕尼:等温线、动力学和热力学研究

阅读:8
作者:Degirmenci Mustafa, Bulduk Ibrahim, Akbel Erten

Abstract

Pazopanib, which is dangerous for aquatic environments due to its toxic and bioaccumulation potential, has been detected at different concentrations in oncology hospital wastewater, sewage, and surface waters. This study aimed to remove pazopanib from wastewater by activated carbon adsorption technique. The effect of the main variables such as initial concentration, pH of pazopanib solution, adsorbent dose, contact time of the phases, and temperature on the adsorption process was evaluated and the optimum adsorption conditions were determined. The experimental data were applied to Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich adsorption isotherm models to describe the adsorption behavior. The experimental data were applied to pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic models to describe the adsorption kinetics. Isotherms were established in the 20-50 °C temperature range to study the adsorption equilibrium. According to the results, the highest removal efficiency of pazopanib (95.87%) was obtained at initial concentration (100 mg L-1), adsorbent dose (0.30 g L-1), temperature (20 °C), contact time (120 min) and pH (7.0). The adsorption kinetics was well described by the pseudo-second-order kinetic model (R2 = 0.9998) and the adsorption isotherm by the Langmuir model (R2 = 0.9999). In thermodynamic studies, the negative values of standard enthalpy (ΔH°), standard free enthalpy (ΔG°), and free entropy (ΔS°) indicate that the adsorption process is spontaneous and favorable, i.e. the disorder is reduced. These results indicate that the developed adsorption process can be efficiently and spontaneously applied for the removal of pazopanib from aqueous solutions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。