A multifactorial model of pathology for age of onset heterogeneity in familial Alzheimer's disease

家族性阿尔茨海默病发病年龄异质性的多因素病理模型

阅读:4
作者:Diego Sepulveda-Falla, Lucia Chavez-Gutierrez, Erik Portelius, Jorge I Vélez, Simon Dujardin, Alvaro Barrera-Ocampo, Felix Dinkel, Christian Hagel, Berta Puig, Claudio Mastronardi, Francisco Lopera, Bradley T Hyman, Kaj Blennow, Mauricio Arcos-Burgos, Bart de Strooper, Markus Glatzel5

Abstract

Presenilin-1 (PSEN1) mutations cause familial Alzheimer's disease (FAD) characterized by early age of onset (AoO). Examination of a large kindred harboring the PSEN1-E280A mutation reveals a range of AoO spanning 30 years. The pathophysiological drivers and clinical impact of AoO variation in this population are unknown. We examined brains of 23 patients focusing on generation and deposition of beta-amyloid (Aβ) and Tau pathology profile. In 14 patients distributed at the extremes of AoO, we performed whole-exome capture to identify genotype-phenotype correlations. We also studied kinome activity, proteasome activity, and protein polyubiquitination in brain tissue, associating it with Tau phosphorylation profiles. PSEN1-E280A patients showed a bimodal distribution for AoO. Besides AoO, there were no clinical differences between analyzed groups. Despite the effect of mutant PSEN1 on production of Aβ, there were no relevant differences between groups in generation and deposition of Aβ. However, differences were found in hyperphosphorylated Tau (pTau) pathology, where early onset patients showed severe pathology with diffuse aggregation pattern associated with increased activation of stress kinases. In contrast, late-onset patients showed lesser pTau pathology and a distinctive kinase activity. Furthermore, we identified new protective genetic variants affecting ubiquitin-proteasome function in early onset patients, resulting in higher ubiquitin-dependent degradation of differentially phosphorylated Tau. In PSEN1-E280A carriers, altered γ-secretase activity and resulting Aβ accumulation are prerequisites for early AoO. However, Tau hyperphosphorylation pattern, and its degradation by the proteasome, drastically influences disease onset in individuals with otherwise similar Aβ pathology, hinting toward a multifactorial model of disease for FAD. In sporadic AD (SAD), a wide range of heterogeneity, also influenced by Tau pathology, has been identified. Thus, Tau-induced heterogeneity is a common feature in both AD variants, suggesting that a multi-target therapeutic approach should be used to treat AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。