The value of the hedgehog signal in osteoblasts in fluoride-induced bone-tissue injury

成骨细胞中的刺猬信号在氟化物引起的骨组织损伤中的价值

阅读:12
作者:Chaonan Deng #, Lin Xu #, Ying Zhang, Lina Zhao, Yan Linghu, Yanni Yu

Conclusion

Hh signal plays an important role in fluoride-induced bone injury. The effective inhibition of cyclopamine is expected to be a new target for the treatment of skeletal damage caused by fluorosis.

Methods

Healthy Sprague-Dawley (SD) rats were randomly divided into four groups: the control group, the fluorosis group (F Group), the fluoride + blocker group (F + Cycl group: rats were treated with fluoride + cyclopamine), and the fluoride + blocker control group (F + DMSO group). After 6 months of intervention, the urinary fluoride content of rats in each group was detected. The primary osteoblasts of rats were selected for cell experiment, and the experiment was carried out after the cells were passaged from the second to the fourth generation.

Objective

This study was designed to observe the expression of important hedgehog (Hh) signal factors in the bone tissue of rats with chronic fluorosis and cultured osteoblasts in order to investigate the role and significance of the Hh signal in fluoride-induced bone injury.

Results

The proliferation rate of primary rat osteoblasts presented time-affected and dose-affected relationships in a short time under treatment with a low dose of sodium fluoride (NaF), but the proliferation of osteoblasts was inhibited by long-term and high-dose NaF exposure. In the F group, the alkaline phosphatase (ALP) activity of osteoblasts increased gradually. The ALP activity was lower in the F + Cycl group than in the F group, and there was no significant difference between the F + DMSO group and F group. With the increase in fluoride exposure, the expression of Hh signal factors and osteogenic-related factor proteins increased gradually. The expressions of Indian hedgehog (Ihh), smoothened (Smo), Glioma-associated oncogene homolog (Gli) 2, and Runt-related transcription factor 2 (Runx2)in the F + Cycl group increased with the dose of fluoride but they were significantly inhibited compared with the F group. Compared with the control group, the content of urinary fluoride in the F group was significantly higher (P < 0.05), but there was no significant change in urinary fluoride content in the F + Cycl group and the F + DMSO group. Compared with the control group, the serum bone alkaline phosphatase (BALP) contents of rats in the other groups increased after 6 months' intake of fluoride water (P < 0.05). After drug blocking, the serum BALP content in the F + Cycl group was lower than that in the F + DMSO group (P < 0.05). The BALP content in the F + DMSO group was similar to that in the F group: it did not decrease. The mRNA expressions of Ihh, Smo, Gli2, and Runx2 in bone tissue of the F group were significantly higher than those in the control group (P < 0.05). After cyclopamine blocking, the expressions decreased (P < 0.05), but the differences between the F + DMSO group and F group were not statistically significant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。