Acetaminophen attenuates lipopolysaccharide-induced cognitive impairment through antioxidant activity

对乙酰氨基酚通过抗氧化作用减轻脂多糖引起的认知障碍

阅读:5
作者:Wei-Xing Zhao, Jun-Han Zhang, Jiang-Bei Cao, Wei Wang, Dong-Xin Wang, Xiao-Ying Zhang, Jun Yu, Yong-Yi Zhang, You-Zhi Zhang, Wei-Dong Mi

Background

Considerable evidence has shown that neuroinflammation and oxidative stress play an important role in the pathophysiology of postoperative cognitive dysfunction (POCD) and other progressive neurodegenerative disorders. Increasing evidence suggests that acetaminophen (APAP) has unappreciated antioxidant and anti-inflammatory properties. However, the impact of APAP on the cognitive sequelae of inflammatory and oxidative stress is unknown. The

Conclusions

Our results suggest that APAP may possess a neuroprotective effect against LPS-induced cognitive impairment and inflammatory and oxidative stress via mechanisms involving its antioxidant and anti-inflammatory properties, as well as its ability to inhibit the mitochondrial permeability transition (MPT) pore and the subsequent apoptotic pathway.

Methods

A mouse model of LPS-induced cognitive impairment was established to evaluate the neuroprotective effects of APAP against LPS-induced cognitive impairment. Adult C57BL/6 mice were treated with APAP half an hour prior to intracerebroventricular microinjection of LPS and every day thereafter, until the end of the study period. The Morris water maze was used to assess cognitive function from postinjection days 1 to 3. Animal behavioural tests as well as pathological and biochemical assays were performed to evaluate LPS-induced hippocampal damage and the neuroprotective effect of APAP.

Results

Mice treated with LPS exhibited impaired performance in the Morris water maze without changing spontaneous locomotor activity, which was ameliorated by treatment with APAP. APAP suppressed the accumulation of pro-inflammatory cytokines and microglial activation induced by LPS in the hippocampus. In addition, APAP increased SOD activity, reduced MDA levels, modulated glycogen synthase kinase 3β (GSK3β) activity and elevated brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Moreover, APAP significantly decreased the Bax/Bcl-2 ratio and neuron apoptosis in the hippocampus of LPS-treated mice. Conclusions: Our results suggest that APAP may possess a neuroprotective effect against LPS-induced cognitive impairment and inflammatory and oxidative stress via mechanisms involving its antioxidant and anti-inflammatory properties, as well as its ability to inhibit the mitochondrial permeability transition (MPT) pore and the subsequent apoptotic pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。