AUF1 Recognizes 8-Oxo-Guanosine Embedded in DNA and Stimulates APE1 Endoribonuclease Activity

AUF1 识别 DNA 中嵌入的 8-氧代鸟苷并刺激 APE1 内切核糖核酸酶活性

阅读:6
作者:Matilde Clarissa Malfatti, Marta Codrich, Emiliano Dalla, Chiara D'Ambrosio, Francesca Storici, Andrea Scaloni, Gianluca Tell

Aims

The existence of modified ribonucleotide monophosphates embedded in genomic DNA, as a consequence of oxidative stress conditions, including 8-oxo-guanosine and ribose monophosphate abasic site (rAP), has been recently highlighted by several works and associated with oxidative stress conditions. Although human apurinic-apyrimidinic endodeoxyribonuclease 1 (APE1), a key enzyme of the base-excision repair pathway, repairs rAP sites and canonical deoxyribose monophosphate abasic sites with similar efficiency, its incision-repairing activity on 8-oxo-guanosine is very weak. The aims of this work were to: (i) identify proteins able to specifically bind 8-oxo-guanosine embedded in DNA and promote APE1 endoribonuclease activity on this lesion, and (ii) characterize the molecular and biological relevance of this interaction using human cancer cell lines.

Conclusion

By showing a novel function of AUF1, our findings shed new light on the process of genome stability in mammalian cells toward oxidative stress-related damages. Antioxid. Redox Signal. 39, 411-431.

Results

By using an unbiased proteomic approach, we discovered that the AU-rich element RNA-binding protein 1 (AUF1) actively recognizes 8-oxo-guanosine and stimulates the APE1 enzymatic activity on this DNA lesion. By using orthogonal approaches, we found that: (i) the interaction between AUF1 and APE1 is modulated by H2O2-treatment; (ii) depletion of APE1 and AUF1 causes the accumulation of single- and double- strand breaks; and (iii) both proteins are involved in modulating the formation of DNA:RNA hybrids. Innovation: These results establish unexpected functions of AUF1 in modulating genome stability and improve our knowledge of APE1 biology with respect to 8-oxo-guanosine embedded in DNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。