Fenebrutinib, a Bruton's tyrosine kinase inhibitor, blocks distinct human microglial signaling pathways

芬布替尼是一种布鲁顿酪氨酸激酶抑制剂,可阻断人类小胶质细胞的特定信号通路。

阅读:2
作者:Julie Langlois ,Simona Lange ,Martin Ebeling ,Will Macnair ,Roland Schmucki ,Cenxiao Li ,Jonathan DeGeer ,Tania J J Sudharshan ,V Wee Yong ,Yun-An Shen ,Christopher Harp ,Ludovic Collin ,James Keaney

Abstract

Background: Bruton's tyrosine kinase (BTK) is an intracellular signaling enzyme that regulates B-lymphocyte and myeloid cell functions. Due to its involvement in both innate and adaptive immune compartments, BTK inhibitors have emerged as a therapeutic option in autoimmune disorders such as multiple sclerosis (MS). Brain-penetrant, small-molecule BTK inhibitors may also address compartmentalized neuroinflammation, which is proposed to underlie MS disease progression. BTK is expressed by microglia, which are the resident innate immune cells of the brain; however, the precise roles of microglial BTK and impact of BTK inhibitors on microglial functions are still being elucidated. Research on the effects of BTK inhibitors has been limited to rodent disease models. This is the first study reporting effects in human microglia. Methods: Here we characterize the pharmacological and functional properties of fenebrutinib, a potent, highly selective, noncovalent, reversible, brain-penetrant BTK inhibitor, in human microglia and complex human brain cell systems, including brain organoids. Results: We find that fenebrutinib blocks the deleterious effects of microglial Fc gamma receptor (FcγR) activation, including cytokine and chemokine release, microglial clustering and neurite damage in diverse human brain cell systems. Gene expression analyses identified pathways linked to inflammation, matrix metalloproteinase production and cholesterol metabolism that were modulated by fenebrutinib treatment. In contrast, fenebrutinib had no significant impact on human microglial pathways linked to Toll-like receptor 4 (TLR4) and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) signaling or myelin phagocytosis. Conclusions: Our study enhances the understanding of BTK functions in human microglial signaling that are relevant to MS pathogenesis and suggests that fenebrutinib could attenuate detrimental microglial activity associated with FcγR activation in people with MS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。