Migration speed of nucleolus precursor bodies in human male pronuclei: a novel parameter for predicting live birth

人类男性原核中核仁前体体的迁移速度:预测活产的新参数

阅读:6
作者:Taketo Inoue, Sayumi Taguchi, Mikiko Uemura, Yoshiko Tsujimoto, Kazunori Miyazaki, Yoshiki Yamashita

Conclusion

The NPBs migrated faster in zygotes having the potential to develop into a blastocyst, and eventually into a baby. This predictor could be an attractive marker for non-invasive embryo selection.

Methods

The migration speed of 263 NPBs from 47 zygotes was quantitated, and embryonic development was observed until the blastocyst stage. The central coordinates of mPN, fPN, and NPBs were noted at multiple timepoints. Then, the distance traveled by the NPBs between two sequential images was measured, and migration speed was calculated. Additionally, we investigated the relationship between NPB migration speed and ploidy status (N = 33) or live birth/ongoing pregnancy (LB/OP) (N = 60) after assisted reproduction.

Purpose

To study the relationship between the migration speed of nucleolus precursor bodies (NPBs) in male and female pronuclei (mPN; fPN) and human embryo development during assisted reproduction.

Results

The NPB migration speed in both mPN and fPN was significantly faster in the zygotes that developed into blastocysts (N = 25) than that in the zygotes that arrested (N = 22). The timing of blastulation was negatively correlated with NPB migration speed in the mPN. Faster NPB migration was significantly correlated with LB/OP. In multivariate logistic analysis, NPB migration speed in the mPN was the only morphokinetic parameter associated with LB/OP. In a receiver-operating characteristic curve analysis of LB/OP by the NPB migration speed in the mPN, the cut-off value was 4.56 μm/h. When this cut-off value was applied to blastocysts with preimplantation genetic testing for aneuploidy, 100% of the blastocysts faster than or equal to the cut-off value were euploid.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。