Dentate Gyrus Morphogenesis is Regulated by an Autism Risk Gene Trio Function in Granule Cells

齿状回形态发生受颗粒细胞中自闭症风险基因三重功能的调控

阅读:17
作者:Mengwen Sun, Weizhen Xue, Hu Meng, Xiaoxuan Sun, Tianlan Lu, Weihua Yue, Lifang Wang, Dai Zhang, Jun Li

Abstract

Autism Spectrum Disorders (ASDs) are reported as a group of neurodevelopmental disorders. The structural changes of brain regions including the hippocampus were widely reported in autistic patients and mouse models with dysfunction of ASD risk genes, but the underlying mechanisms are not fully understood. Here, we report that deletion of Trio, a high-susceptibility gene of ASDs, causes a postnatal dentate gyrus (DG) hypoplasia with a zigzagged suprapyramidal blade, and the Trio-deficient mice display autism-like behaviors. The impaired morphogenesis of DG is mainly caused by disturbing the postnatal distribution of postmitotic granule cells (GCs), which further results in a migration deficit of neural progenitors. Furthermore, we reveal that Trio plays different roles in various excitatory neural cells by spatial transcriptomic sequencing, especially the role of regulating the migration of postmitotic GCs. In summary, our findings provide evidence of cellular mechanisms that Trio is involved in postnatal DG morphogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。