MitCHAP-60 and Hereditary Spastic Paraplegia SPG-13 Arise from an Inactive hsp60 Chaperonin that Fails to Fold the ATP Synthase β-Subunit

MitCHAP-60 和遗传性痉挛性截瘫 SPG-13 源于失活的 hsp60 伴侣蛋白无法折叠 ATP 合酶 β 亚基

阅读:4
作者:Jinliang Wang, Adrian S Enriquez, Jihui Li, Alejandro Rodriguez, Bianka Holguin, Daniel Von Salzen, Jay M Bhatt, Ricardo A Bernal

Abstract

The human mitochondrial heat shock protein 60 (hsp60) is a tetradecameric chaperonin that folds proteins in the mitochondrial matrix. An hsp60 D3G mutation leads to MitCHAP-60, an early onset neurodegenerative disease while hsp60 V72I has been linked to SPG13, a form of hereditary spastic paraplegia. Previous studies have suggested that these mutations impair the protein folding activity of hsp60 complexes but the detailed mechanism by which these mutations lead the neuromuscular diseases remains unknown. It is known, is that the β-subunit of the human mitochondrial ATP synthase co-immunoprecipitates with hsp60 indicating that the β-subunit is likely a substrate for the chaperonin. Therefore, we hypothesized that hsp60 mutations cause misfolding of proteins that are critical for aerobic respiration. Negative-stain electron microscopy and DLS results suggest that the D3G and V72I complexes fall apart when treated with ATP or ADP and are therefore unable to fold denatured substrates such as α-lactalbumin, malate dehydrogenase (MDH), and the β-subunit of ATP synthase in in-vitro protein-folding assays. These data suggests that hsp60 plays a crucial role in folding important players in aerobic respiration such as the β-subunit of the ATP synthase. The hsp60 mutations D3G and V72I impair its ability to fold mitochondrial substrates leading to abnormal ATP synthesis and the development of the MitCHAP-60 and SPG13 neuromuscular degenerative disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。