Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability

受病毒启发的 DNA 纳米结构膜封装可实现体内稳定性

阅读:6
作者:Steven D Perrault, William M Shih

Abstract

DNA nanotechnology enables engineering of molecular-scale devices with exquisite control over geometry and site-specific functionalization. This capability promises compelling advantages in advancing nanomedicine; nevertheless, instability in biological environments and innate immune activation remain as obstacles for in vivo application. Natural particle systems (i.e., viruses) have evolved mechanisms to maintain structural integrity and avoid immune recognition during infection, including encapsulation of their genome and protein capsid shell in a lipid envelope. Here we introduce virus-inspired enveloped DNA nanostructures as a design strategy for biomedical applications. Achieving a high yield of tightly wrapped unilamellar nanostructures, mimicking the morphology of enveloped virus particles, required precise control over the density of attached lipid conjugates and was achieved at 1 per ∼180 nm(2). Envelopment of DNA nanostructures in PEGylated lipid bilayers conferred protection against nuclease digestion. Immune activation was decreased 2 orders of magnitude below controls, and pharmacokinetic bioavailability improved by a factor of 17. By establishing a design strategy suitable for biomedical applications, we have provided a platform for the engineering of sophisticated, translation-ready DNA nanodevices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。