Effect of OH scavengers on the chemical composition of α-pinene secondary organic aerosol

OH清除剂对α-蒎烯二次有机气溶胶化学成分的影响

阅读:6
作者:David M Bell, Veronika Pospisilova, Felipe Lopez-Hilfiker, Amelie Bertrand, Mao Xiao, Xueqin Zhou, Wei Huang, Dongyu S Wang, Chuan Ping Lee, Josef Dommen, Urs Baltensperger, Andre S H Prevot, Imad El Haddad, Jay G Slowik

Abstract

OH scavengers are extensively used in studies of secondary organic aerosol (SOA) because they create an idealized environment where only a single oxidation pathway is occurring. Here, we present a detailed molecular characterization of SOA produced from α-pinene + O3 with a variety of OH scavengers using the extractive electrospray time-of-flight mass spectrometer in our atmospheric simulation chamber, which is complemented by characterizing the gas phase composition in flow reactor experiments. Under our experimental conditions, radical chemistry largely controls the composition of SOA. Besides playing their desired role in suppressing the reaction of α-pinene with OH, OH scavengers alter the reaction pathways of radicals produced from α-pinene + O3. This involves changing the HO2 : RO2 ratio, the identity of the RO2 radicals present, and the RO2 major sinks. As a result, the use of the OH scavengers has significant effects on the composition of SOA, including inclusions of scavenger molecules in SOA, the promotion of fragmentation reactions, and depletion of dimers formed via α-pinene RO2-RO2 reactions. To date fragmentation reactions and inclusion of OH scavenger products into secondary organic aerosol have not been reported in atmospheric simulation chamber studies. Therefore, care should be considered if and when to use an OH scavenger during experiments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。