Multi-modality deep learning model reaches high prediction accuracy in the diagnosis of ovarian cancer

多模态深度学习模型在卵巢癌诊断中达到高预测准确率

阅读:4
作者:Zimo Wang, Shuyu Luo, Jing Chen, Yang Jiao, Chen Cui, Siyuan Shi, Yang Yang, Junyi Zhao, Yitao Jiang, Yujuan Zhang, Fanhua Xu, Jinfeng Xu, Qi Lin, Fajin Dong

Abstract

We evaluated the diagnostic performance of a multimodal deep-learning (DL) model for ovarian mass differential diagnosis. This single-center retrospective study included 1,054 ultrasound (US)-detected ovarian tumors (699 benign and 355 malignant). Patients were randomly divided into training (n = 675), validation (n = 169), and testing (n = 210) sets. The model was developed using ResNet-50. Three DL-based models were proposed for benign-malignant classification of these lesions: single-modality model that only utilized US images; dual-modality model that used US images and menopausal status as inputs; and multi-modality model that integrated US images, menopausal status, and serum indicators. After 5-fold cross-validation, 210 lesions were tested. We evaluated the three models using the area under the curve (AUC), accuracy, sensitivity, and specificity. The multimodal model outperformed the single- and dual-modality models with 93.80% accuracy and 0.983 AUC. The Multimodal ResNet-50 DL model outperformed the single- and dual-modality models in identifying benign and malignant ovarian tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。