Differential purinergic signaling in bladder sensory neurons of naïve and bladder-inflamed mice

幼稚小鼠和膀胱炎小鼠膀胱感觉神经元的差异嘌呤信号

阅读:4
作者:Xiaowei Chen, G F Gebhart

Abstract

This study explored purinergic signaling in lumbosacral (LS) and thoracolumbar (TL) dorsal root ganglion neurons innervating the urinary bladder. In naïve mice, a greater proportion of LS (93%) than that of TL (77%) bladder neurons responded to purinergic agonists. Three types of purinergic currents were identified: 'sustained' (homomeric P2X2) currents were detected only in LS neurons, rapidly activating, 'slow' deactivating (heteromeric P2X2/3) currents predominated in both LS and TL neurons, and 'fast' activating/de-activating (homomeric P2X3) currents were detected only in TL neurons. Relative to TL bladder neurons, slow current density was greater in LS neurons, which also had a more negative action potential threshold and generated more action potentials in response to purinergic agonists (suggesting greater excitability of LS neurons). Single cell nested PCR documented P2X2 and P2X3 subunit expression in both TL and LS bladder neurons. Relative to saline treatment, bladder wall thickness and weight increased after cyclophosphamide (CYP) treatment. Both LS and TL neuron excitability increased (rheobase was decreased and responses to purinergic agonists increased) after CYP treatment. The proportion of sustained currents in LS bladder neurons increased fourfold after CYP bladder inflammation. Although proportions of slow and fast purinergic currents in TL neurons were unchanged by CYP treatment, the fast current density was greater than in saline-treated mice. These results in mouse, as previously described in rat, reveal differential purinergic signaling in TL and LS bladder neurons. The predominant currents and significant changes after inflammation, however, occur in different ganglia/sensory pathways in mouse and rat.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。