Streptomyces erythraeus trypsin for proteomics applications

红霉素链霉菌胰蛋白酶用于蛋白质组学应用

阅读:4
作者:Jianying Z Kiser, Marc Post, Benlian Wang, Masaru Miyagi

Abstract

Among trypsin family proteases, bovine and porcine trypsins are currently the enzymes of choice for proteomics applications. However, there are trypsins from other sources that have higher catalytic activities than mammalian trypsins. Of these, Streptomyces erythraeus trypsin (SET) is particularly attractive, because SET has more than 1 order of magnitude greater amidase activity than mammalian trypsin and is resistant to autolytic degradation. These properties are advantageous for many proteomics applications. To evaluate this protease for proteomic applications, we expressed SET in E. coli, purified it to homogeneity, and then examined its enzymatic properties. As expected, recombinant SET (rSET) had greater than an order of magnitude higher amide bond hydrolysis activity (Km/k(cat)) for both N(alpha)-benzoyl-L-arginine-p-nitroanilide and N(alpha)-benzoyl-L-lysine-p-nitroanilide than modified porcine trypsin and did not show any sign of autolytic degradation after 96 h of incubation at 37 degrees C. The performance of rSET for proteomic applications was evaluated by applying the protease for in-solution and in-gel digestion of bovine serum albumin, and for 18O labeling of peptides. These results confirmed that rSET has the potential to be a useful protease in such proteomic experiments. We also report various properties of rSET that are fundamental to the use of this protease for proteomics applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。