Freeze-Driven Synthesis of DNA Hairpin-Conjugated Gold Nanoparticle Biosensors for Dual-Mode Detection

冷冻驱动合成 DNA 发夹结合金纳米粒子生物传感器用于双模式检测

阅读:7
作者:Angela Michelle San Juan, Siddhant Jaitpal, Ka Wai Ng, Cecilia Martinez, Sayantan Tripathy, Christian Phillips, Gerard L Coté, Samuel Mabbott

Abstract

Freeze-based immobilization of deoxyribonucleic acid (DNA) oligonucleotides on gold nanoparticles (AuNPs) is highly efficient for single-stranded oligonucleotides but typically does not accommodate structures such as snap-cooled DNA hairpins (Sc-HPs) and snap-cooled molecular beacons (Sc-MBs) frequently used for biorecognition applications. Recognizing this limitation, we have developed a modified, freeze-based technique specifically designed to enable the adsorption of such hairpin oligonucleotides onto AuNP surfaces while ensuring that they retain their biosensing capabilities. Successful hairpin oligonucleotide conjugation of varying lengths to a wide range of AuNP diameters was corroborated by dynamic light scattering, ζ-potential, and UV-vis spectrophotometry. Moreover, we conducted a thorough evaluation of this modified method, confirming the retention of the sensing functions of Sc-HPs and Sc-MBs. This advancement not only offers a more efficient route for DNA hairpin conjugation but also elucidates the underlying biorecognition functions, with implications for broader applications in molecular diagnostics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。