Fibronectin aggregates promote features of a classically and alternatively activated phenotype in macrophages

纤维连接蛋白聚集体促进巨噬细胞中经典和替代激活表型的特征

阅读:8
作者:Arend H Sikkema, Josephine M J Stoffels, Peng Wang, Frederike J Basedow, Robbert Bulsink, Jeffrey J Bajramovic, Wia Baron

Background

Means to promote endogenous remyelination in multiple sclerosis (MS) benefit from insights into the role of inhibitory molecules that preclude remyelination. Fibronectin assembles into aggregates in MS, which impair oligodendrocyte differentiation and remyelination. Microglia and macrophages are required for complete remyelination and normally switch from a pro-inflammatory classical phenotype upon demyelination to a supportive alternative phenotype during remyelination. Here, we investigated the role of fibronectin aggregates in modulating microglia and macrophage behavior and phenotypes.

Conclusions

Macrophages and microglia grown on aggregated fibronectin coatings adopt a distinct phenotype compared to plasma fibronectin coatings, showing pro-inflammatory and anti-inflammatory features. Therefore, the pathological fibronectin aggregates in MS lesions may impair remyelination by promoting and/or retaining several classically activated phenotypic features in microglia and macrophages.

Methods

Bone marrow-derived macrophages and microglia from newborn rats were exposed to (a) plasma fibronectin coatings; (b) coatings of deoxycholate-insoluble fibronectin aggregates; (c) interferon-γ (IFNγ) treatment, as an inducer of the pro-inflammatory classically activated phenotype; (d) interleukin-4 (IL-4) treatment, to promote the pro-regenerative anti-inflammatory alternatively activated phenotype; or (e) left unstimulated on uncoated plastic. To examine the in vitro effects of the different stimulations on cell behavior and phenotype, proliferation, phagocytosis, morphology, and pro- and anti-inflammatory features were assessed.

Results

In line with a classically activated phenotype, exposure of microglia and macrophages to both plasma fibronectin and fibronectin aggregates induced an amoeboid morphology and stimulated phagocytosis by macrophages. Furthermore, as observed upon IFNγ treatment, coatings of aggregated, but not plasma fibronectin, promoted nitric oxide release by microglia and macrophages. Remarkably, fibronectin aggregates induced nitric oxide release in an integrin-independent manner. In addition, fibronectin aggregates, but not plasma fibronectin, increased the expression of arginase-1, similarly as observed upon treatment with IL-4. Proteomic analysis revealed that aggregates of fibronectin act as a scaffold for other proteins, including Hsp70 and thrombospondin-1, which may clarify the induction of both pro-inflammatory and anti-inflammatory features in macrophages cultured on fibronectin aggregate, but not plasma fibronectin coatings. Conclusions: Macrophages and microglia grown on aggregated fibronectin coatings adopt a distinct phenotype compared to plasma fibronectin coatings, showing pro-inflammatory and anti-inflammatory features. Therefore, the pathological fibronectin aggregates in MS lesions may impair remyelination by promoting and/or retaining several classically activated phenotypic features in microglia and macrophages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。