Macromolecular bridging-enhanced holey graphene oxide-based film and its humidity deformation response

大分子桥接增强多孔氧化石墨烯基薄膜及其湿度变形响应

阅读:7
作者:Yue Zhao, Fan Wu, Yifan Zhao, Chao Sui, Chao Wang, Ben Jiang, Wenxiang Liu, Huifeng Tan

Abstract

The interaction of water molecules with graphene oxide (GO) at the interface or surface will lead to the reversible deformation response of GO-based materials. However, the fabrication of structurally stable and highly sensitive GO-based humidity-responsive films remains a challenge. Since the stability and sensitivity of GO-based humidity-responsive devices are significantly limited by the deformation differences between different components. Herein, we demonstrate that polyamidoamine (PAMAM) bridge-enhanced carboxylated holey GO (hGC/PAMAM) films are sensitive to moisture and exhibit excellent stability in water. Experiments and molecular dynamics (MD) simulation show that the formation of N-C=O between PAMAM and GO sheets significantly increased the interlayer bonding force. Dynamic monitoring of the surface strain of the hGC/PAMAM films showed that the strains spread a gradient from the high-humidity to the low-humidity side, causing asymmetric expansion along the horizontal and vertical directions. This work will provide a better understanding of the mechanism of water molecule transport between layers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。