Expression, purification and characterization of codon-optimized human N-methylpurine-DNA glycosylase from Escherichia coli

大肠杆菌中密码子优化的人类 N-甲基嘌呤-DNA 糖基化酶的表达、纯化和表征

阅读:5
作者:Sanjay Adhikari, Praveen Varma Manthena, Aykut Uren, Rabindra Roy

Abstract

N-Methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, initiates excision repair of several N-alkylpurine adducts, deaminated and lipid peroxidation-induced purine adducts. MPG from human and mouse has previously been cloned and expressed. However, due to the poor expression level in Escherichia coli (E. coli) and multi-step purification process of full-length MPG, most successful attempts have been limited by extremely poor yield and stability. Here, we have optimized the codons within the first five residues of human MPG (hMPG) to the best used codons for E. coli and expressed full-length hMPG in large amounts. This high expression level in conjunction with a strikingly high isoelectric point (9.65) of hMPG, in fact, helped purify the enzyme in a single step. A previously well-characterized monoclonal antibody having an epitope in the N-terminal tail could detect this codon-optimized hMPG protein. Surface plasmon resonance studies showed an equilibrium binding constant (K(D)) of 0.25 nM. Steady-state enzyme kinetics showed an apparent K(m) of 5.3 nM and k(cat) of 0.2 min(-1) of MPG for the hypoxanthine (Hx) cleavage reaction. Moreover, hMPG had an optimal activity at pH 7.5 and 100mM KCl. Unlike the previous reports by others, this newly purified full-length hMPG is appreciably stable at high temperature, such as 50 degrees C. Thus, this study indicates that this improved expression and purification system will facilitate large scale production and purification of a stable human MPG protein for further biochemical, biophysical and structure-function analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。