Inhalable Mucociliary-On-Chip System Revealing Pulmonary Clearance Dynamics in Nanodrug Delivery

可吸入的粘液纤毛芯片系统揭示纳米药物输送中的肺清除动力学

阅读:5
作者:Ko-Chih Lin, Hsuan-Yu Lin, Chuan-Yi Yang, Ying-Ling Chu, Ren-Hao Xie, Cheng-Ming Wang, Yun-Long Tseng, He Ru Chen, Johnson H Y Chung, Jia-Wei Yang, Guan-Yu Chen

Abstract

The development of a inhaled nanodrug delivery assessment platform is crucial for advancing treatments for chronic lung diseases. Traditional in vitro models and commercial aerosol systems fail to accurately simulate the complex human respiratory patterns and mucosal barriers. To address this, we have developed the breathing mucociliary-on-a-chip (BMC) platform, which replicates mucociliary clearance and respiratory dynamics in vitro. This platform allows for precise analysis of drug deposition and penetration, providing critical insights into how liposomes and other nanocarriers interact with lung tissues under various airflow conditions. Our results reveal that liposomes penetrate deeper into the cellular layer under high shear stress, with both static and dynamic airflows distinctly affecting their drug release rates. The BMC platform integrates dynamic inhalation systems with mucociliary clearance functionality, enabling a comprehensive evaluation of drug delivery efficacy. This approach highlights the importance of airflow dynamics in optimizing inhalable nanodrug delivery systems, improving nanocarrier design, and tailoring drug dosages and release strategies. The BMC platform represents a significant advancement in the field of inhaled nanodrug delivery, offering a more accurate and reliable method for assessing the performance of therapies. By providing a detailed understanding of drug interactions with lung tissues, this platform supports the development of personalized inhaled therapies and offers promising strategies for treating pulmonary diseases and advancing nanodrug development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。