Modulation of Arginase-2 mRNA Levels by ω-3 PUFAs and Aspirin in Asthmatic Human Lung Fibroblasts

ω-3 PUFA 和阿司匹林对哮喘人肺成纤维细胞中精氨酸酶-2 mRNA 水平的调节

阅读:12
作者:Vamsee K Duggirala, Kyla Geary, Donald Hasenmayer, Farzaneh Daghigh

Abstract

Airway remodeling (AR) increases disease severity, and morbidity of asthmatic patients by contributing to irreversible airflow obstruction and progressive declines in lung function. Arginase isoenzymes and the downstream enzymes ornithine decarboxylase (ODC) and ornithine aminotransferase (OAT) have been implicated in the hyperplastic and fibrotic changes of AR, respectively. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and resolvin metabolites have anti-AR effects, but whether they are mediated through the arginase pathway is unclear. Our study intended to determine the effects of the ω-3 PUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), resolvin D1 (RvD1), TH1 cytokines, acetylsalicylic acid (ASA), cAMP, and dexamethasone (DEX) on the expression of arginase isoenzymes arginase 1 (ARG1) and arginase 2 (ARG2), ODC, and OAT in human lung fibroblasts (HLF) from normal (NHLF) and diseased (DHLF) asthmatic donors using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Our data showed that EPA and EPA+DHA downregulated ARG2 mRNA 2-fold in both types of HLF. DHA, RvD1, and DEX did not alter mRNA levels for any of the genes studied. EPA lowered the ARG2 protein levels in DHLF, but did not affect those levels in NHLF. ASA upregulated ARG2 mRNA 5-fold and 7-fold in NHLF and DHLF, respectively, TH1 cytokines downregulated ARG2, ODC, and OAT mRNA in DHLF 10-fold, 2-fold, and 2.5-fold, respectively, and cAMP downregulated ARG2 mRNA 2-fold in DHLF. These results are the first to show a direct effect of ω-3 PUFAs on ARG2 mRNA levels and provide further evidence for a role of ω-3 PUFAs in AR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。