Amphiregulin promotes hair regeneration of skin-derived precursors via the PI3K and MAPK pathways

双调蛋白通过 PI3K 和 MAPK 通路促进皮肤来源前体的毛发再生

阅读:8
作者:Qiumei Lu, Ying Gao, Zhimeng Fan, Xing Xiao, Yu Chen, Yuan Si, Deqiang Kong, Shuai Wang, Meijian Liao, Xiaodong Chen, Xusheng Wang, Weiwei Chu

Conclusions

By exploiting a 3D co-culture model, we determined that AREG promoted SKP stemness by enhancing both proliferation and hair-inducing capacity through the PI3K and MAPK pathways. These findings suggest AREG therapy as a potentially promising approach for treating alopecia.

Methods

We describe a 3D co-culture system accompanied by kyoto encyclopaedia of genes and genomes and gene ontology enrichment analyses to determine the key factors and pathways that enhance SKP stemness and verified using alkaline phosphatase assays, Ki-67 staining, HF reconstitution, Western blot and immunofluorescence staining. The upregulated genes were confirmed utilizing corresponding recombinant protein or small-interfering RNA silencing in vitro, as well as the evaluation of telogen-to-anagen transition and HF reconstitution in vivo.

Results

The 3D co-culture system revealed that epidermal stem cells and adipose-derived stem cells enhanced SKP proliferation and HF regeneration capacity by amphiregulin (AREG), with the promoted stemness allowing SKPs to gain an earlier telogen-to-anagen transition and high-efficiency HF reconstitution. By contrast, inhibitors of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways downstream of AREG signalling resulted in diametrically opposite activities. Conclusions: By exploiting a 3D co-culture model, we determined that AREG promoted SKP stemness by enhancing both proliferation and hair-inducing capacity through the PI3K and MAPK pathways. These findings suggest AREG therapy as a potentially promising approach for treating alopecia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。