IL-1β and HMGB1 are anti-neurogenic to endogenous neural stem cells in the sclerotic epileptic human hippocampus

IL-1β 和 HMGB1 对硬化性癫痫人类海马中的内源性神经干细胞具有抗神经源性作用

阅读:8
作者:Malik Zaben, Niels Haan, Feras Sharouf, Aminul Ahmed, Lars E Sundstrom, William P Gray

Background

The dentate gyrus exhibits life-long neurogenesis of granule-cell neurons, supporting hippocampal dependent learning and memory. Both temporal lobe epilepsy patients and animal models frequently have hippocampal-dependent learning and memory difficulties and show evidence of reduced neurogenesis. Animal and human temporal lobe epilepsy studies have also shown strong innate immune system activation, which in animal models reduces hippocampal neurogenesis. We sought to determine if and how neuroinflammation signals reduced neurogenesis in the epileptic human hippocampus and its potential reversibility.

Conclusion

Our results demonstrate a HMGB1 and IL-1β-mediated environmental anti-neurogenic effect in human TLE, identifying both the IL-1R and TLR 2/4 receptors as potential drug targets for restoring human hippocampal neurogenesis in temporal lobe epilepsy.

Methods

We isolated endogenous neural stem cells from surgically resected hippocampal tissue in 15 patients with unilateral hippocampal sclerosis. We examined resultant neurogenesis after growing them either as neurospheres in an ideal environment, in 3D cultures which preserved the inflammatory microenvironment and/or in 2D cultures which mimicked it.

Results

3D human hippocampal cultures largely replicated the cellular composition and inflammatory environment of the epileptic hippocampus. The microenvironment of sclerotic human epileptic hippocampal tissue is strongly anti-neurogenic, with sustained release of the proinflammatory proteins HMGB1 and IL-1β. IL-1β and HMGB1 significantly reduce human hippocampal neurogenesis and blockade of their IL-1R and TLR 2/4 receptors by IL1Ra and Box-A respectively, significantly restores neurogenesis in 2D and 3D culture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。