Structurally Tunable Reduced Graphene Oxide Substrate Maintains Mouse Embryonic Stem Cell Pluripotency

结构可调的还原氧化石墨烯基质维持小鼠胚胎干细胞多能性

阅读:6
作者:Jinping Zhao, Mingliang Tang, Jing Cao, Dan Ye, Xudong Guo, Jiajie Xi, Yi Zhou, Yuchen Xia, Jing Qiao, Renjie Chai, Xiaowei Yang, Jiuhong Kang

Abstract

Culturing embryonic stem cells (ESCs) in vitro usually requires animal-derived trophoblast cells, which may cause pathogenic and immune reactions; moreover, the poor repeatability between batches hinders the clinical application of ESCs. Therefore, it is essential to synthesize a xenogeneic-free and chemically well-defined biomaterial substrate for maintaining ESC pluripotency. Herein, the effects of structurally tunable reduced graphene oxide (RGO) substrates with different physicochemical properties on ESC pluripotency are studied. Colony formation and CCK-8 assays show that the RGO substrate with an average 30 µm pore size promotes cell survival and proliferation. The unannealed RGO substrate promotes ESC proliferation significantly better than the annealed substrate due to the interfacial hydrophilic groups. The RGO substrate can also maintain ESC for a long time. Additionally, immunofluorescence staining shows that ESCs cultured on an RGO substrate highly express E-cadherin and β-catenin, whereas after being modified by Dickkopf-related protein 1, the RGO substrate is unable to sustain ESC pluripotency. Furthermore, the cell line that interferes with E-cadherin is also unable to maintain pluripotency. These results confirm that the RGO substrate maintains ESC pluripotency by promoting E-cadherin-mediated cell-cell interaction and Wnt signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。