O-GlcNAcylation of core components of the translation initiation machinery regulates protein synthesis

翻译起始机制核心部件的 O-GlcNAc 糖基化调节蛋白质合成

阅读:9
作者:Xuexia Li, Qiang Zhu, Xiaoliu Shi, Yaxian Cheng, Xueliu Li, Huan Xu, Xiaotao Duan, Linda C Hsieh-Wilson, Jennifer Chu, Jerry Pelletier, Maowei Ni, Zhiguo Zheng, Sihui Li, Wen Yi

Abstract

Protein synthesis is essential for cell growth, proliferation, and survival. Protein synthesis is a tightly regulated process that involves multiple mechanisms. Deregulation of protein synthesis is considered as a key factor in the development and progression of a number of diseases, such as cancer. Here we show that the dynamic modification of proteins by O-linked β-N-acetyl-glucosamine (O-GlcNAcylation) regulates translation initiation by modifying core initiation factors eIF4A and eIF4G, respectively. Mechanistically, site-specific O-GlcNAcylation of eIF4A on Ser322/323 disrupts the formation of the translation initiation complex by perturbing its interaction with eIF4G. In addition, O-GlcNAcylation inhibits the duplex unwinding activity of eIF4A, leading to impaired protein synthesis, and decreased cell proliferation. In contrast, site-specific O-GlcNAcylation of eIF4G on Ser61 promotes its interaction with poly(A)-binding protein (PABP) and poly(A) mRNA. Depletion of eIF4G O-GlcNAcylation results in inhibition of protein synthesis, cell proliferation, and soft agar colony formation. The differential glycosylation of eIF4A and eIF4G appears to be regulated in the initiation complex to fine-tune protein synthesis. Our study thus expands the current understanding of protein synthesis, and adds another dimension of complexity to translational control of cellular proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。