Contact Geometry-Dependent Excitonic Emission in Mixed-Dimensional van der Waals Heterostructures

混合维范德华异质结构中接触几何相关的激子发射

阅读:8
作者:Hyukjin Song, Sumin Ji, Sung Gu Kang, Naechul Shin

Abstract

Manipulation of excitonic emission in two-dimensional (2D) materials via the assembly of van der Waals (vdW) heterostructures unlocks numerous opportunities for engineering their photonic and optoelectronic properties. In this work, we introduce a category of mixed-dimensional vdW heterostructures, integrating 2D materials with one-dimensional (1D) semiconductor nanowires composed of vdW layers. This configuration induces spatially distinct localized excitonic emissions through a tailored interfacial heterolayer atomic arrangement. By precisely adjusting both the axial and sidewall facet orientations of bottom-up grown PbI2 vdW nanowires and by transferring them onto 1L WSe2 flakes, we establish vdW heterointerfaces with either perpendicular or parallel interatomic arrangements. The edge-standing heterojunction, featuring perpendicular PbI2 layers atop WSe2, promotes efficient charge transfer through the edges and coupled localized states, leading to an enhanced redshifted excitonic emission. Conversely, the layer-by-layer heterointerface, where PbI2 layers are in parallel contact with WSe2, exhibits substantial quenching due to deep midgap states in a type-II alignment, as evidenced by power-dependent measurements and first-principle calculations. Our results introduce a method for actively manipulating excitonic emissions in 2D transition metal dichalcogenides (TMDs) through edge engineering, highlighting their potential in the development of various quantum devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。