Proteomic analysis identifies subgroups of patients with active systemic lupus erythematosus

蛋白质组学分析识别活动性系统性红斑狼疮患者的亚群

阅读:6
作者:Kevin Y C Su #, John A Reynolds #, Rachel Reed, Rachael Da Silva, Janet Kelsall, Ivona Baricevic-Jones, David Lee, Anthony D Whetton, Nophar Geifman, Neil McHugh, Ian N Bruce; the MASTERPLANS and BILAG-BR consortia

Conclusions

Unsupervised proteomic analysis identifies clusters of patients with active SLE, that are associated with clinical and serological features, which may facilitate biomarker discovery. The observed proteomic heterogeneity further supports the need for a personalised approach to treatment in SLE.

Objective

Systemic lupus erythematosus (SLE) is a clinically and biologically heterogenous autoimmune disease. We aimed to investigate the plasma proteome of patients with active SLE to identify novel subgroups, or endotypes, of patients. Method: Plasma was collected from patients with active SLE who were enrolled in the British Isles Lupus Assessment Group Biologics Registry (BILAG-BR). The plasma proteome was analysed using a data-independent acquisition method, Sequential Window Acquisition of All theoretical mass spectra mass spectrometry (SWATH-MS). Unsupervised, data-driven clustering algorithms were used to delineate groups of patients with a shared proteomic profile.

Results

In 223 patients, six clusters were identified based on quantification of 581 proteins. Between the clusters, there were significant differences in age (p = 0.012) and ethnicity (p = 0.003). There was increased musculoskeletal disease activity in cluster 1 (C1), 19/27 (70.4%) (p = 0.002) and renal activity in cluster 6 (C6) 15/24 (62.5%) (p = 0.051). Anti-SSa/Ro was the only autoantibody that significantly differed between clusters (p = 0.017). C1 was associated with p21-activated kinases (PAK) and Phospholipase C (PLC) signalling. Within C1 there were two sub-clusters (C1A and C1B) defined by 49 proteins related to cytoskeletal protein binding. C2 and C6 demonstrated opposite Rho family GTPase and Rho GDI signalling. Three proteins (MZB1, SND1 and AGL) identified in C6 increased the classification of active renal disease although this did not reach statistical significance (p = 0.0617). Conclusions: Unsupervised proteomic analysis identifies clusters of patients with active SLE, that are associated with clinical and serological features, which may facilitate biomarker discovery. The observed proteomic heterogeneity further supports the need for a personalised approach to treatment in SLE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。