An evidence update to explore molecular targets and protective mechanisms of apigenin against abdominal aortic aneurysms based on network pharmacology and experimental validation

基于网络药理学和实验验证的芹菜素抗腹主动脉瘤的分子靶点和保护机制的证据更新

阅读:5
作者:Dongyu Li, Lei Wang, Bo Jiang, Yuxi Miao, Xuan Li

Abstract

Abdominal aortic aneurysms (AAA) is a life-threatening disease and the incidence of AAA is still on the rise in recent years. Numerous studies suggest that dietary moderate consumption of polyphenol exerts beneficial effects on cardiovascular disease. Apigenin (API) is a promising dietary polyphenol and possesses potent beneficial effects on our body. Although our previous study revealed protective effects of API on experimental AAA formation, up till now few studies were carried out to further investigate its involved molecular mechanisms. In the present study, network pharmacology combined molecular docking and experimental validation was used to explore API-related therapeutic targets and mechanisms in the treatment of AAA. Firstly, we collected 202 API-related therapeutic targets and 2475 AAA-related pathogenetic targets. After removing duplicates, a total of 68 potential therapeutic targets were obtained. Moreover, 5 targets with high degree including TNF, ACTB, INS, JUN, and MMP9 were identified as core targets of API for treating AAA. In addition, functional enrichment analysis indicated that API exerted pharmacological effects in AAA by affecting versatile mechanisms, including apoptosis, inflammation, blood fluid dynamics, and immune modulation. Molecular docking results further supported that API had strong affinity with the above core targets. Furthermore, protein level of core targets and related pathways were evaluated in a Cacl2-induced AAA model by using western blot and immunohistochemistry. The experimental validation results demonstrated that API significantly attenuated phosphorylation of JUN and protein level of predicted core targets. Taken together, based on network pharmacological and experimental validation, our study systematically explored associated core targets and potential therapeutic pathways of API for AAA treatment, which could supply valuable insights and theoretical basis for AAA treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。