Inhibition of microsomal prostaglandin E-synthase-1 (mPGES-1) selectively suppresses PGE2 in an in vitro equine inflammation model

抑制微粒体前列腺素 E-合酶-1 (mPGES-1) 可在体外马炎症模型中选择性抑制 PGE2

阅读:5
作者:Emily M Martin, Samuel L Jones

Abstract

Inhibition of prostaglandin E2 (PGE2) production effectively limits inflammation in horses, however nonspecific prostaglandin blockade via cyclooxygenase (COX) inhibition elicits deleterious gastrointestinal side effects in equine patients. Thus, more selective PGE2 targeting therapeutics are needed to treat inflammatory disease in horses. One potential target is microsomal prostaglandin E-synthase-1 (mPGES-1), which is the terminal enzyme downstream of COX-2 in the inducible PGE2 synthesis cascade. This enzyme has yet to be studied in equine leukocytes, which play a pivotal role in equine inflammatory disease. The objective of this study was to determine if mPGES-1 is a PGE2-selective anti-inflammatory target in equine leukocytes. To evaluate this objective, leukocyte-rich plasma (LRP) was isolated from equine whole blood collected via jugular venipuncture of six healthy adult horses of mixed breeds and genders. LRP was primed with granulocyte-monocyte colony-stimulating factor (GM-CSF) and stimulated with lipopolysaccharide (LPS) in the presence or absence of an mPGES-1 inhibitor (MF63), a COX-2 inhibitor (NS-398), or a nonselective COX inhibitor (indomethacin). Following treatment, mPGES-1 and COX-2 mRNA and protein levels were measured via qPCR and western blot, respectively, and PGE2, thromboxane (TXA2) and prostacyclin (PGI2) levels were measured in cellular supernatants via ELISA. This study revealed that LPS significantly increased mPGES-1 mRNA, but not protein levels in equine LRP as measured by qPCR and western blot, respectively. In contrast, COX-2 mRNA and protein were coordinately induced by LPS. Importantly, treatment of LPS-stimulated leukocytes with indomethacin and NS-398 significantly reduced extracellular concentrations of multiple prostanoids (PGE2, TXA2 and PGI2), while the mPGES-1 inhibitor MF63 selectively inhibited PGE2 production only. mPGES-1 inhibition also preserved higher basal levels of PGE2 production when compared to either COX inhibitor, which might be beneficial in a clinical setting. In conclusion, this work identifies mPGES-1 as a key regulator of PGE2 production and a PGE2-selective target in equine leukocytes. This study demonstrates that mPGES-1 is a potentially safer and effective therapeutic target for treatment of equine inflammatory disease when compared to traditional non-steroidal anti-inflammatory drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。