Tuning of oxygen vacancy-induced electrical conductivity in Ti-doped hematite films and its impact on photoelectrochemical water splitting

钛掺杂赤铁矿薄膜中氧空位诱导电导率的调控及其对光电化学水分解的影响

阅读:5
作者:Pranab Biswas, Ardak Ainabayev, Ainur Zhussupbekova, Feljin Jose, Robert O'Connor, Aitkazy Kaisha, Brian Walls, Igor V Shvets

Abstract

Titanium (Ti)-doped hematite (α-Fe2O3) films were grown in oxygen-depleted condition by using the spray pyrolysis technique. The impact of post-deposition annealing in oxygen-rich condition on both the conductivity and water splitting efficiency was investigated. The X-ray diffraction pattern revealed that the films are of rhombohedral α-Fe2O3 structure and dominantly directed along (012). The as-grown films were found to be highly conductive with electrons as the majority charge carriers (n-type), a carrier concentration of 1.09×1020 cm-3, and a resistivity of 5.9×10-2 Ω-cm. The conductivity of the films were reduced upon post-deposition annealing. The origin of the conductivity was attributed firstly to Ti4+ substituting Fe3+ and secondly to the ionized oxygen vacancies (VO) in the crystal lattice of hematite. Upon annealing the samples in oxygen-rich condition, VO slowly depleted and the conductivity reduced. The photocurrent of the as-grown samples was found to be 3.4 mA/cm-2 at 1.23 V vs. RHE. The solar-to-hydrogen efficiency for the as-grown sample was calculated to be 4.18% at 1.23 V vs. RHE. The photocurrents were found to be significantly stable in aqueous environment. A linear relationship between conductivity and water-splitting efficiency was established.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。