Activity of plasma membrane V-ATPases is critical for the invasion of MDA-MB231 breast cancer cells

质膜V-ATPases活性对MDA-MB231乳腺癌细胞侵袭至关重要

阅读:5
作者:Kristina Cotter, Joseph Capecci, Souad Sennoune, Markus Huss, Martin Maier, Raul Martinez-Zaguilan, Michael Forgac

Abstract

The vacuolar (H(+))-ATPases (V-ATPases) are a family of ATP-driven proton pumps that couple ATP hydrolysis with translocation of protons across membranes. Previous studies have implicated V-ATPases in cancer cell invasion. It has been proposed that V-ATPases participate in invasion by localizing to the plasma membrane and causing acidification of the extracellular space. To test this hypothesis, we utilized two separate approaches to specifically inhibit plasma membrane V-ATPases. First, we stably transfected highly invasive MDA-MB231 cells with a V5-tagged construct of the membrane-embedded c subunit of the V-ATPase, allowing for extracellular expression of the V5 epitope. We evaluated the effect of addition of a monoclonal antibody directed against the V5 epitope on both V-ATPase-mediated proton translocation across the plasma membrane and invasion using an in vitro Matrigel assay. The addition of anti-V5 antibody resulted in acidification of the cytosol and a decrease in V-ATPase-dependent proton flux across the plasma membrane in transfected but not control (untransfected) cells. These results demonstrate that the anti-V5 antibody inhibits activity of plasma membrane V-ATPases in transfected cells. Addition of the anti-V5 antibody also inhibited in vitro invasion of transfected (but not untransfected) cells. Second, we utilized a biotin-conjugated form of the specific V-ATPase inhibitor bafilomycin. When bound to streptavidin, this compound cannot cross the plasma membrane. Addition of this compound to MDA-MB231 cells also inhibited in vitro invasion. These studies suggest that plasma membrane V-ATPases play an important role in invasion of breast cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。