Metabolism and in vitro assessment of the mutagenic activity of urinary extracts from rats after inhalation exposure to 1-methylnaphthalene

大鼠吸入1-甲基萘后尿液提取物的代谢及体外致突变活性评估

阅读:6
作者:Radosław Świercz, Maciej Stępnik, Jolanta Gromadzińska, Katarzyna Domeradzka-Gajda, Joanna Roszak, Wojciech Wąsowicz

Conclusions

Metabolism of 1-MN in rats after the inhalation exposure leading to 1-NA was mainly observed during the first day after the end of exposure. It is likely that 1-MN metabolites present in rat urine can induce the increased micronuclei frequency as was shown in V79 cells. Int J Occup Med Environ Health. 2022;35(6):731-46.

Material and methods

In this study the distribution of 1-NA in lung, liver, spleen, kidney and urinary excretion of 1-NA in rats after single and repeated inhalation exposure to 1-MN vapors were investigated. The activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and cytochrome were measured of the rats. Genotoxic effects were evaluated with the in vitro micronucleus test on V79 hamster fibroblasts.

Methods

In this study the distribution of 1-NA in lung, liver, spleen, kidney and urinary excretion of 1-NA in rats after single and repeated inhalation exposure to 1-MN vapors were investigated. The activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and cytochrome were measured of the rats. Genotoxic effects were evaluated with the in vitro micronucleus test on V79 hamster fibroblasts.

Results

The concentrations of 1-NA in the tissues of rats after single and repeated exposure to 1-MN were dependent on the exposure dose. High levels of 1-NA were found in kidneys of animals after the single and repeated exposure to 1-MN. With an increase of 1-MN dose, an increase in the activity of cytochrome P450 (CYP1A1 and CYP1A2) was observed in the liver of rats. Compared to control animals, significantly higher ALT activity was noted in serum of rats exposed to 1-MN. The micronuclei frequency in V79 cells exposed to 1-MN (in the range of analyzable concentrations; i.e., 5-25 μg/ml) did not differ significantly from the vehicle control, whereas urine extracts from rats exposed to 1-MN induced a significant increase in the frequency of micronuclei compared to urine extracts from the group of control animals. Conclusions: Metabolism of 1-MN in rats after the inhalation exposure leading to 1-NA was mainly observed during the first day after the end of exposure. It is likely that 1-MN metabolites present in rat urine can induce the increased micronuclei frequency as was shown in V79 cells. Int J Occup Med Environ Health. 2022;35(6):731-46.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。