Characterization of intermediate steps in amyloid beta (Aβ) production under near-native conditions

近天然条件下淀粉样β蛋白(Aβ)生成中间步骤的表征

阅读:6
作者:Fredrik Olsson, Staffan Schmidt, Veit Althoff, Lisa M Munter, Shaobo Jin, Susanne Rosqvist, Urban Lendahl, Gerd Multhaup, Johan Lundkvist

Abstract

Processing of the amyloid precursor protein (APP) by γ-secretase results in generation of Aβ peptides of different lengths ranging from 51 to 30 residues. Accumulation of Aβ and in particular Aβ42 is enhanced by familial Alzheimer disease (FAD) causing mutations in APP and is believed to play a pivotal role. The molecular mechanism underlying normal Aβ production, the impact of FAD mutations on this process and how anti-amyloidogenic γ-secretase modulators (GSMs) cause a selective decrease in Aβ40 and Aβ42 and an increase in shorter Aβ peptides, however, is poorly understood. By using a combined immuno- and LC-MS-based assay we identify several major intermediates, i.e. 3- and 4-peptides that line up head to head across the entire APP transmembrane sequence from Aβ51 to Aβ31/Aβ30 and from Aβ49 to Aβ30/31. FAD APP mutations displayed a relative increase in 3- and 4-peptides from Aβ48 to Aβ38 compared with Aβ49 to Aβ37. These findings correlate with an increase in the Aβ42/40 ratio. GSMs caused a decrease in Aβ40 and Aβ42 and an increase in Aβ37 and Aβ38 paralleled by an increase of the intermediates Aβ40-38 and Aβ42-39. Collectively, these data provide a thorough characterization of all intermediate steps in Aβ production in native cell membranes and provide key mechanistic insights to genetic and pharmacological modulation of Aβ generation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。