Therapeutic potential of targeting the IRF2/POSTN/Notch1 axis in nucleus pulposus cells for intervertebral disc degeneration

靶向髓核细胞中的 IRF2/POSTN/Notch1 轴治疗椎间盘退变的潜力

阅读:4
作者:Daxue Zhu, Zhaoheng Wang, Shijie Chen, Yanhu Li, Xuewen Kang

Background

Intervertebral disc degeneration (IDD) is a leading cause of low back pain, often linked to inflammation and pyroptosis in nucleus pulposus (NP) cells. The role of Periostin (POSTN) in IDD remains unclear.

Conclusion

The study elucidates the pivotal role of POSTN in mediating NP cell pyroptosis through the NLRP3 inflammasome and highlights GA as a promising therapeutic candidate for IDD. These findings provide new insights into the molecular mechanisms of IDD and potential avenues for treatment.

Methods

IVD samples were collected from patients undergoing spinal surgery and classified according to the Pfirrmann grading system. Human NP cells were cultured and treated with IL-1β to induce a pyroptotic phenotype. Western blotting, Immunofluorescence (IF), and immunohistochemistry (IHC) assessed the expression levels of relevant proteins. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays verified the binding of IRF2 to the POSTN and GSDMD promoters and evaluated the activation levels of target genes. The severity of IDD was evaluated using MRI and histological analysis.

Objective

This study aims to investigate the influence of POSTN on pyroptosis and NLRP3 inflammasome activation in NP cells during IDD.

Results

Deletion of POSTN significantly alleviated IDD by suppressing NLRP3 inflammasome activity and pyroptosis in NP cells. POSTN was found to aggravate NP cell pyroptosis by activating the NLRP3 inflammasome through the NF-κB (P65) and cGAS/STING signaling pathways. Furthermore, POSTN interacted with Notch1 to induce NLRP3 expression. IRF2 was identified as a regulator of POSTN at the transcriptional level, contributing to NLRP3 activation and NP cell pyroptosis. IRF2 also directly induced the transcriptional expression of GSDMD, mediating pyroptosis in NP cells. Chemical screening identified Glucosyringic acid (GA) as a direct inhibitor of POSTN, which delayed IDD progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。