Induction of hemolysis and eryptosis by occupational pollutant nickel chloride is mediated through calcium influx and p38 MAP kinase signaling

职业污染物氯化镍通过钙内流和 p38 MAP 激酶信号传导诱发溶血和红细胞凋亡

阅读:6
作者:Mohammad A Alfhili, Hassan S Alamri, Jawaher Alsughayyir, Ahmed M Basudan

Conclusions

It is concluded that NiCl2 induces p38 MAPK-dependent hemolysis, and stimulates the canonical features of premature eryptosis. This report presents the first description of the molecular mechanisms underlying the hemolytic and eryptotic potential of NiCl2 and, thus, may explain changes in hematological parameters observed in poisoning victims. Int J Occup Med Environ Health. 2022;35(1):1-11.

Material and methods

Cells from healthy donors were incubated for 24 h at 37°C in the presence or absence of 0.5‒10 mM of NiCl2, and cytotoxicity was determined through hemoglobin leakage by colorimetry under different experimental conditions. Eryptotic markers were also identified by flow cytofluorometry using Annexin-V-FITC tagging for phosphatidylserine (PS) exposure, light scatter properties for cellular dimensions, Fluo4/AM labeling for intracellular calcium, and H2DCFDA staining for reactive oxygen species (ROS). Additionally, small molecule inhibitors were used to probe the signaling pathways involved.

Methods

Cells from healthy donors were incubated for 24 h at 37°C in the presence or absence of 0.5‒10 mM of NiCl2, and cytotoxicity was determined through hemoglobin leakage by colorimetry under different experimental conditions. Eryptotic markers were also identified by flow cytofluorometry using Annexin-V-FITC tagging for phosphatidylserine (PS) exposure, light scatter properties for cellular dimensions, Fluo4/AM labeling for intracellular calcium, and H2DCFDA staining for reactive oxygen species (ROS). Additionally, small molecule inhibitors were used to probe the signaling pathways involved.

Results

It was found that NiCl2 at 10 mM caused profound intracellular calcium overload and significant calcium-dependent hemolysis. Also, NiCl2 reduced forward scatter and increased side scatter, Annexin- positive cells, and ROS levels. Importantly, NiCl2-induced hemolysis was significantly attenuated by the exclusion of extracellular calcium, and in the presence of p38 MAP kinase (MAPK) inhibitor SB203580. Conclusions: It is concluded that NiCl2 induces p38 MAPK-dependent hemolysis, and stimulates the canonical features of premature eryptosis. This report presents the first description of the molecular mechanisms underlying the hemolytic and eryptotic potential of NiCl2 and, thus, may explain changes in hematological parameters observed in poisoning victims. Int J Occup Med Environ Health. 2022;35(1):1-11.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。