MiRNA Profiling in Pectoral Muscle Throughout Pre- to Post-Natal Stages of Chicken Development

鸡出生前至出生后发育阶段胸肌中的 miRNA 分析

阅读:7
作者:Min Chen, Shaolan Zhang, Zhongxian Xu, Jian Gao, Shailendra Kumar Mishra, Qing Zhu, Xiaoling Zhao, Yan Wang, Huadong Yin, Xiaolan Fan, Bo Zeng, Mingyao Yang, Deying Yang, Qingyong Ni, Yan Li, Mingwang Zhang, Diyan Li

Abstract

MicroRNA (miRNA) is known to be an important regulator of muscle growth and development. The regulation of microRNA on the skeletal muscle phenotype of animals is mainly achieved by regulating the proliferation and differentiation of myoblasts. In this study, we sequenced a total of 60 samples from 15 developing stages of the pectoral muscle and five other tissues at 300 days of Tibetan chicken. We characterized the expression patterns of miRNAs across muscle developmental stages, and found that the chicken growth and development stage was divided into early-embryonic and late-embryonic as well as postnatal stages. We identified 81 and 21 DE-miRNAs by comparing the miRNA profiles of pectoral muscle of three broad periods and different tissues, respectively; and 271 miRNAs showed time-course patterns. Their potential targets were predicted and used for functional enrichment to understand their regulatory functions. Significantly, GgmiRNA-454 is a time-dependent and tissue-differential expression miRNA. In order to elucidate the role of gga-miRNA-454 in the differentiation of myoblasts, we cultured chicken myoblasts in vitro. The results show that although gga-miRNA-454-3p initiates increase and thereafter decrease during the chicken myoblasts differentiation, it had no effect on primary myoblasts proliferation. Furthermore, we confirm that gga-miRNA-454 inhibits myoblast differentiation by targeting the myotube-associated protein SBF2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。