Retinal Microenvironment-Protected Rhein-GFFYE Nanofibers Attenuate Retinal Ischemia-Reperfusion Injury via Inhibiting Oxidative Stress and Regulating Microglial/Macrophage M1/M2 Polarization

视网膜微环境保护的莱茵酸-GFFYE 纳米纤维通过抑制氧化应激和调节小胶质细胞/巨噬细胞 M1/M2 极化减轻视网膜缺血再灌注损伤

阅读:5
作者:Zhuhong Zhang, Shengjun Peng, Tengyan Xu, Jia Liu, Laien Zhao, Hui Xu, Wen Zhang, Yuanying Zhu, Zhimou Yang

Abstract

Retinal ischemia is involved in the occurrence and development of various eye diseases, including glaucoma, diabetic retinopathy, and central retinal artery occlusion. To the best of our knowledge, few studies have reported self-assembling peptide natural products for the suppression of ocular inflammation and oxidative stress. Herein, a self-assembling peptide GFFYE is designed and synthesized, which can transform the non-hydrophilicity of rhein into an amphiphilic sustained-release therapeutic agent, and rhein-based therapeutic nanofibers (abbreviated as Rh-GFFYE) are constructed for the treatment of retinal ischemia-reperfusion (RIR) injury. Rh-GFFYE significantly ameliorates oxidative stress and inflammation in an in vitro oxygen-glucose deprivation (OGD) model of retinal ischemia and a rat model of RIR injury. Rh-GFFYE also significantly enhances retinal electrophysiological recovery and exhibits good biocompatibility. Importantly, Rh-GFFYE also promotes the transition of M1-type macrophages to the M2 type, ultimately altering the pro-inflammatory microenvironment. Further investigation of the treatment mechanism indicates that Rh-GFFYE activates the PI3K/AKT/mTOR signaling pathway to reduce oxidative stress and inhibits the NF-κB and STAT3 signaling pathways to affect inflammation and macrophage polarization. In conclusion, the rhein-loaded nanoplatform alleviates RIR injury by modulating the retinal microenvironment. The findings are expected to promote the clinical application of hydrophobic natural products in RIR injury-associated eye diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。