New regulators of a high affinity Ca2+ influx system revealed through a genome-wide screen in yeast

通过酵母全基因组筛选揭示高亲和力 Ca2+ 流入系统的新调节剂

阅读:5
作者:D Christian Martin, Hyemin Kim, Nancy A Mackin, Lymarie Maldonado-Báez, Carlos C Evangelista Jr, Veronica G Beaudry, Drew D Dudgeon, Daniel Q Naiman, Scott E Erdman, Kyle W Cunningham

Abstract

The bakers' yeast Saccharomyces cerevisiae utilizes a high affinity Ca(2+) influx system (HACS) to survive assaults by mating pheromones, tunicamycin, and azole-class antifungal agents. HACS consists of two known subunits, Cch1 and Mid1, that are homologous and analogous to the catalytic α-subunits and regulatory α2δ-subunits of mammalian voltage-gated calcium channels, respectively. To search for additional subunits and regulators of HACS, a collection of gene knock-out mutants was screened for abnormal uptake of Ca(2+) after exposure to mating pheromone or to tunicamycin. The screen revealed that Ecm7 is required for HACS function in most conditions. Cycloheximide chase experiments showed that Ecm7 was stabilized by Mid1, and Mid1 was stabilized by Cch1 in non-signaling conditions, suggesting they all interact. Ecm7 is a member of the PMP-22/EMP/MP20/Claudin superfamily of transmembrane proteins that includes γ-subunits of voltage-gated calcium channels. Eleven additional members of this superfamily were identified in yeast, but none was required for HACS activity in response to the stimuli. Remarkably, many dozens of genes involved in vesicle-mediated trafficking and protein secretion were required to prevent spontaneous activation of HACS. Taken together, the findings suggest that HACS and calcineurin monitor performance of the membrane trafficking system in yeasts and coordinate compensatory processes. Conservation of this quality control system in Candida glabrata suggests that many pathogenic species of fungi may utilize HACS and calcineurin to resist azoles and other compounds that target membrane biosynthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。