Transactivation of platelet-derived growth factor receptor alpha by the GTPase-deficient activated mutant of Galpha12

GTPase 缺陷型 Galpha12 激活突变体对血小板衍生生长因子受体 α 的转录激活

阅读:4
作者:Rashmi N Kumar, Ji Hee Ha, Rangasudhagar Radhakrishnan, Danny N Dhanasekaran

Abstract

The GTPase-deficient, activated mutant of Galpha12 (Galpha12Q229L, or Galpha12QL) induces neoplastic growth and oncogenic transformation of NIH 3T3 cells. Using microarray analysis, we have previously identified a role for platelet-derived growth factor receptor alpha (PDGFRalpha) in Galpha12-mediated cell growth (R. N. Kumar et al., Cell Biochem. Biophys. 41:63-73, 2004). In the present study, we report that Galpha12QL stimulates the functional expression of PDGFRalpha and demonstrate that the expression of PDGFRalpha by Galpha12QL is dependent on the small GTPase Rho. Our results indicate that it is cell type independent as the transient expression of Galpha12QL or the activation of Galpha12-coupled receptors stimulates the expression of PDGFRalpha in NIH 3T3 as well as in human astrocytoma 1321N1 cells. Furthermore, we demonstrate the presence of an autocrine loop involving PDGF-A and PDGFRalpha in Galpha12QL-transformed cells. Analysis of the functional consequences of the Galpha12-PDGFRalpha signaling axis indicates that Galpha12 stimulates the phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway through PDGFR. In addition, we show that Galpha12QL stimulates the phosphorylation of forkhead transcription factor FKHRL1 via AKT in a PDGFRalpha- and PI3K-dependent manner. Since AKT promotes cell growth by blocking the transcription of antiproliferative genes through the inhibitory phosphorylation of forkhead transcription factors, our results describe for the first time a PDGFRalpha-dependent signaling pathway involving PI3K-AKT-FKHRL1, regulated by Galpha12QL in promoting cell growth. Consistent with this view, we demonstrate that the expression of a dominant negative mutant of PDGFRalpha attenuated Galpha12-mediated neoplastic transformation of NIH 3T3 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。