Activation of the Integrated Stress Response and Metabolic Dysfunction in a Murine Model of Sleep Apnea

睡眠呼吸暂停小鼠模型中综合应激反应和代谢功能障碍的激活

阅读:6
作者:Abdelnaby Khalyfa, Zhuanhong Qiao, Alex Gileles-Hillel, Ahamed A Khalyfa, Mahzad Akbarpour, Brian Popko, David Gozal

Abstract

Intermittent hypoxia (IH) induces activation of the integrated stress response (ISR), but its role in IH-induced visceral white adipose tissue (vWAT) insulin resistance is unknown. CHOP is activated by chronic ISR, whereas GADD34 dephosphorylates the subunit of translation initiation factor 2 (eIF2α), leading to termination of the ISR. We hypothesized that CHOP/Gadd34 null mice would not manifest evidence of insulin resistance after IH exposures. Eight-week-old CHOP/GADD34-/- (double mutant [DM]) and wild-type (WT) littermates were randomly assigned to IH or room air (RA) exposures for 6 weeks. Glucose and insulin tolerance tests were performed, and regulatory T cells (Tregs) and macrophages in vWAT were assessed. Phosphorylated eIF2α:total eIF2α, ATF4, XBP1 expression, and insulin-induced pAKT/AKT expression changes were examined in vWATs. Single GADD34-/- and PERK+/- mice were also evaluated. Body weight and vWAT mass were reduced in DM and WT mice after IH. M1/M2 macrophages and inflammatory macrophages (Ly-6chigh) were significantly increased in WT vWAT but remained unchanged in DM mice. Tregs were significantly decreased in WT vWAT but not in DM mice. Systemic insulin and glucose tolerance tests revealed insulin resistance in IH-WT but not in IH-DM mice. Similarly, decreased pAKT/AKT responses to exogenous insulin emerged in IH-WT compared with RA-WT mice, whereas no significant differences emerged in IH-DM compared with DM-RA. Chronic ISR activation appears to contribute to the insulin resistance and vWAT inflammation that characteristically emerge after long-term IH exposures in a murine model of obstructive sleep apnea.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。