Targeting protein phosphatase 1 (PP1) to the actin cytoskeleton: the neurabin I/PP1 complex regulates cell morphology

将蛋白磷酸酶 1 (PP1) 靶向肌动蛋白细胞骨架:神经蛋白 I/PP1 复合物调节细胞形态

阅读:5
作者:Carey J Oliver, Ryan T Terry-Lorenzo, Elizabeth Elliott, Wendy A Christensen Bloomer, Shi Li, David L Brautigan, Roger J Colbran, Shirish Shenolikar

Abstract

Neurabin I, a neuronal actin-binding protein, binds protein phosphatase 1 (PP1) and p70 ribosomal S6 protein kinase (p70S6K), both proteins implicated in cytoskeletal dynamics. We expressed wild-type and mutant neurabins fused to green fluorescent protein in Cos7, HEK293, and hippocampal neurons. Biochemical and cellular studies showed that an N-terminal F-actin-binding domain dictated neurabin I localization at actin cytoskeleton and promoted disassembly of stress fibers. Deletion of the C-terminal coiled-coil and sterile alpha motif domains abolished neurabin I dimerization and induced filopodium extension. Immune complex assays showed that neurabin I recruited an active PP1 via a PP1-docking sequence,(457)KIKF(460). Mutation of the PP1-binding motif or PP1 inhibition by okadaic acid and calyculin A abolished filopodia and restored stress fibers in cells expressing neurabin I. In vitro and in vivo studies suggested that the actin-binding domain attenuated protein kinase A (PKA) phosphorylation of neurabin I. Modification of a major PKA site, serine-461, impaired PP1 binding. Finally, p70S6K was excluded from neurabin I/PP1 complexes and required the displacement of PP1 for recruitment to neurabin I. These studies provided new insights into the assembly and regulation of a neurabin I/PP1 complex that controls actin rearrangement to promote spine development in mammalian neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。