Cluster analysis of extracellular matrix biomarkers predicts the development of impaired systolic function within 1 year of acute myocardial infarction

细胞外基质生物标志物的聚类分析可预测急性心肌梗死后 1 年内收缩功能受损的发展

阅读:7
作者:Morgane M Brunton-O'Sullivan, Ana S Holley, Bijia Shi, Scott A Harding, Peter D Larsen

Abstract

The clinical utility of combining extracellular matrix (ECM) biomarkers to predict the development of impaired systolic function following acute myocardial infarction (AMI) remains largely undetermined. A combination of ELISA and multiplexing assays were performed to measure matrix metalloproteinase (MMP)-2, MMP-3, MMP-8, MMP-9, periostin, N-terminal type I procollagen (PINP) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in plasma samples from 120 AMI patients. All patients had an echocardiogram within 1 year of AMI, and were divided into impaired (n = 37, LVEF < 50%) and preserved (n = 83, LVEF ≥ 50%) systolic function groups. Exploratory factor analysis was performed on log-transformed biomarkers using principle axis analysis with Oblimin rotation. Cluster analysis was performed on log-transformed and normalised biomarkers using Ward's method of minimum variance and the squared Euclidean distance metric. Upon univariate analysis, current smoking, prescription of ACE inhibitors at discharge, peak hsTnT > 610 ng/L (median), MMP-8 levels, Factor 1 scores and Cluster One assignment were predictive of impaired systolic function. Upon multivariate analysis, Cluster One assignment (odds ratio [95% CI], 2.74 [1.04-7.23], p = 0.04) remained an independent predictor of systolic dysfunction in combination with clinical variables. These observations support the usefulness of combining ECM biomarkers using cluster analysis for predicting the development of impaired systolic function in AMI patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。