Biomarkers distinguish apoptotic and necrotic cell death during hepatic ischemia/reperfusion injury in mice

生物标志物可区分小鼠肝缺血/再灌注损伤期间的凋亡和坏死细胞死亡

阅读:6
作者:Min Yang, Daniel J Antoine, James L Weemhoff, Rosalind E Jenkins, Anwar Farhood, B Kevin Park, Hartmut Jaeschke

Abstract

Hepatic ischemia/reperfusion (IRP) injury is a significant clinical problem during tumor-resection surgery (Pringle maneuver) and liver transplantation. However, the relative contribution of necrotic and apoptotic cell death to the overall liver injury is still controversial. To address this important issue with a standard murine model of hepatic IRP injury, plasma biomarkers of necrotic cell death such as micro-RNA 122, full-length cytokeratin 18 (FK18), and high-mobility group box 1 (HMGB1) protein and plasma biomarkers of apoptosis such as plasma caspase-3 activity and caspase-cleaved fragment of cytokeratin 18 (CK18) coupled with markers of inflammation (hyperacetylated HMGB1) were compared by histological features in hematoxylin and eosin-stained and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-stained liver sections. After 45 minutes of hepatic ischemia and 1 to 24 hours of reperfusion, all necrosis markers increased dramatically in plasma by 40- to >10,000-fold over the baseline with a time course similar to that of alanine aminotransferase. These data correlated well with histological characteristics of necrosis. Within the area of necrosis, most cells were TUNEL positive; initially (≤3 hours of reperfusion), the staining was restricted to nuclei, but it later spread to the cytosol, and this is characteristic of karyorrhexis during necrotic cell death. In contrast, the lack of morphological evidence of apoptotic cell death and relevant caspase-3 activity in the postischemic liver correlated well with the absence of caspase-3 activity and CK18 (except for a minor increase at 3 hours of reperfusion) in plasma. A quantitative comparison of FK18 (necrosis) and CK18 (apoptosis) release indicated dominant cell death by necrosis during IRP and only a temporary and very minor degree of apoptosis. These data suggest that the focus of future research should be the elucidation of necrotic signaling mechanisms to identify relevant targets, which may be used to attenuate hepatic IRP injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。