Folding and activity of mutant cystathionine β-synthase depends on the position and nature of the purification tag: characterization of the R266K CBS mutant

突变胱硫醚 β-合酶的折叠和活性取决于纯化标签的位置和性质:R266K CBS 突变体的表征

阅读:6
作者:Tomas Majtan, Jan P Kraus

Abstract

Cystathionine β-synthase (CBS), a heme-containing pyridoxal-5-phosphate (PLP)-dependent enzyme, catalyzes the condensation of serine and homocysteine to yield cystathionine. Missense mutations in CBS, the most common cause of homocystinuria, often result in misfolded proteins. Arginine 266, where the pathogenic missense mutation R266K was identified, appears to be involved in the communication between heme and the PLP-containing catalytic center. Here, we assessed the effect of a short affinity tag (6xHis) compared to a bulky fusion partner (glutathione S-transferase - GST) on CBS wild type (WT) and R266K mutant enzyme properties. While WT CBS was successfully expressed either in conjunction with a GST or with a 6xHis tag, the mutant R266K CBS had no activity, did not form native tetramers and did not respond to chemical chaperone treatment when expressed with a GST fusion partner. Interestingly, expression of R266K CBS constructs with a 6xHis tag at either end yielded active enzymes. The purified, predominantly tetrameric, R266K CBS with a C-terminal 6xHis tag had ∼82% of the activity of a corresponding WT CBS construct. Results from thermal pre-treatment of the enzyme and the denaturation profile of R266K suggests a lower thermal stability of the mutant enzyme compared to WT, presumably due to a disturbed heme environment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。