Can the cyanide metabolite, 2-aminothiazoline-4-carboxylic acid, be used for forensic verification of cyanide poisoning?

氰化物代谢物2-氨基噻唑啉-4-羧酸可以用于氰化物中毒的法医鉴定吗?

阅读:14
作者:Abdullah H Alluhayb, Carter Severance, Tara Hendry-Hofer, Vikhyat S Bebarta, Brian A Logue

Conclusion

While there are still questions to be answered, ATCA was the most adept forensic marker of CN poisoning (i.e., ATCA produced the longest half-life, the largest increase above baseline levels, and most stable background concentrations).

Methods

CN, SCN-, and ATCA were measured in postmortem swine (N = 8) stored at 4 °C and postmortem blood stored at 25 °C (room temperature, RT) and 37 °C (typical human body temperature, HBT).

Purpose

Forensic verification of cyanide (CN) poisoning by direct CN analysis in postmortem blood is challenging due to instability of CN in biological samples. CN metabolites, thiocyanate (SCN-) and 2-aminothiazoline-4-carboxylic acid (ATCA), have been proposed as more stable biomarkers, yet it is unclear if either is appropriate for this purpose. In this study, we evaluated the behavior of CN biomarkers in postmortem swine and postmortem blood to determine which serves as the best biomarker of CN exposure.

Results

Following CN poisoning, the concentration of each CN biomarker increased well above the baseline. In postmortem swine, CN concentrations declined rapidly (t1/2 = 34.3 h) versus SCN- (t1/2 = 359 h, 15 days) and ATCA (t1/2 = 544 h, 23 days). CN instability in postmortem blood increased at RT (t1/2 = 10.7 h) and HBT (t1/2 = 6.6 h). SCN- and ATCA were more stable than CN at all storage conditions. In postmortem swine, the t1/2s of SCN- and ATCA were 15 and 23 days, respectively. While both the t1/2s of SCN- and ATCA were relatively lengthy, endogenous levels of SCN- were much more variable than ATCA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。