Efficient photodegradation of polystyrene microplastics integrated with hydrogen evolution: Uncovering degradation pathways

聚苯乙烯微塑料的高效光降解与氢气释放相结合:揭示降解途径

阅读:5
作者:Jiehong He, Lanfang Han, Weiwei Ma, Liying Chen, Chuanxin Ma, Chao Xu, Zhifeng Yang

Abstract

Photocatalytic microplastics (MPs) conversion into valuable products is a promising approach to alleviate MPs pollution in aquatic environments. Herein, we developed an amorphous alloy/photocatalyst composite (FeB/TiO2) that can successfully convert polystyrene (PS) MPs to clean H2 fuel and valuable organic compounds (92.3% particle size reduction of PS-MPs and 103.5 μmol H2 production in 12 h). FeB effectively enhanced the light-absorption and carrier separation of TiO2, thereby promoting more reactive oxygen species generation (especially ‧OH) and combination of photoelectrons with protons. The main products (e.g., benzaldehyde, benzoic acid, etc.) were identified. Additionally, the dominant PS-MPs photoconversion pathway was elucidated based on density functional theory calculations, by which the significant role of ‧OH was demonstrated in combination with radical quenching data. This study provides a prospective approach to mitigate MPs pollution in aquatic environments and reveals the synergistic mechanism governing the photocatalytic conversion of MPs and generation of H2 fuel.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。