Microarray-based genomic profiling and in situ hybridization on fibrotic bone marrow biopsies for the identification of numerical chromosomal abnormalities in myelodysplastic syndrome

基于微阵列的基因组分析和纤维化骨髓活检原位杂交用于识别骨髓增生异常综合征中的染色体数目异常

阅读:8
作者:Marian Jpl Stevens-Kroef, Konnie M Hebeda, Eugène T Verwiel, Eveline J Kamping, Patricia H van Cleef, Roland P Kuiper, Patricia Jta Groenen

Background

Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematological malignancies. In MDS patients with a fibrotic bone marrow the aspiration of cells often fails (dry-tap), which hampers standard karyotyping. Obtaining genetic data from these fibrotic marrows is therefore challenging, and up till now in situ hybridization applied to bone marrow biopsies is the only option. The microarray-based genomic profiling technology has already proven its value for bone marrow aspirates and peripheral blood samples, but has never been applied to the technically challenging bone marrow biopsies. We describe an approach for microarray-based genomic profiling on bone marrow biopsies and demonstrate its ability to obtain clinically relevant cytogenetic aberrations. In addition the data were compared with those obtained by in situ hybridization and karyotyping.

Conclusions

We demonstrate that genome wide microarray-based genomic profiling performed on bone marrow biopsies has a similar success rate compared to in situ hybridization, and prevents misinterpretation of chromosomal losses as observed by FISH. In addition, equal to even higher resolutions were obtained with genomic profiling compared to conventional karyotyping. Our findings indicate that microarray-based profiling, even on bone marrow biopsies, is a valid approach for the identification of genetic abnormalities. This is a valuable substitution in cases of fibrotic MDS lacking cytogenetic results.

Results

We have evaluated the success rate of microarray-based genomic profiling by studying twenty-one bone marrow biopsies (7 fibrotic MDS, 12 non-fibrotic MDS and 2 reactive), by microarray-based genomic profiling and in situ hybridization (12 of 21 cases). The data obtained with these techniques were compared with conventional karyotyping data on corresponding bone marrow aspirates. Of the 15 copy number aberrations that were detected by in situ hybridization, 13 were concordant with microarray-based genomic profiling and karyotyping, whereas two hybridizations were misinterpreted. In 20 of 21 patients, the data obtained by microarray-based genomic profiling and karyotyping were identical or differences could be explained by the presence of marker chromosomes, complex karyotypes, clonal heterogeneity or disease progression. Conclusions: We demonstrate that genome wide microarray-based genomic profiling performed on bone marrow biopsies has a similar success rate compared to in situ hybridization, and prevents misinterpretation of chromosomal losses as observed by FISH. In addition, equal to even higher resolutions were obtained with genomic profiling compared to conventional karyotyping. Our findings indicate that microarray-based profiling, even on bone marrow biopsies, is a valid approach for the identification of genetic abnormalities. This is a valuable substitution in cases of fibrotic MDS lacking cytogenetic results.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。