miR394 and LCR cooperate with TPL to regulate AM initiation

miR394 和 LCR 与 TPL 协同调控 AM 启动

阅读:6
作者:Liya Liu, Binbin Hu, Siying Guo, Zhihui Xue, Tao Wang, Cui Zhang

Abstract

Plant architecture is a main determinate of crop yield, and lateral branching significantly influences the number of inflorescences and seeds. The mechanism of axillary bud initiation remains unclear. This work aimed to examine how miRNAs regulate axillary bud initiation. By constructing a small RNA library and screening a mutant population, we revealed the initiation of axillary buds is specifically induced by miR394 and repressed by its target, LEAF CURLING RESPONSIVENESS (LCR). Using promoter-driven fluorescent tags and in situ hybridization, we showed that miR394 is localized in the center of the leaf axil where AMs are initiated. Through molecular and genetic research, we revealed that miR394/LCR may regulate REVOLUTA (REV) and SHOOT MERISTEMLESS (STM) to establish the axillary meristem. Immunoprecipitation-mass spectrometry studies revealed that LCR, as an F-box protein, may interact with TOPLESS (TPL) proteins and participate in ubiquitinated protein degradation. Our results reveal an important mechanism by which the miR394-regulated LCR accelerates the degradation of TPL to precisely modulate axillary bud initiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。